
Pacific Graphics 2021
E. Eisemann, K. Singh, and F.-L Zhang
(Guest Editors)

Volume 40 (2021), Number 7

Neural Sequence Transformation

Sabyasachi Mukherjee1 Sayan Mukherjee2,3 Binh-Son Hua4 Nobuyuki Umetani1 Daniel Meister1†

1The University of Tokyo 2University of Illinois at Chicago 3blueqat Co. Ltd. 4VinAI Research and VinUniversity

Abstract
Monte Carlo integration is a technique for numerically estimating a definite integral by stochastically sampling its integrand.
These samples can be averaged to make an improved estimate, and the progressive estimates form a sequence that converges
to the integral value on the limit. Unfortunately, the sequence of Monte Carlo estimates converges at a rate of O(

√
n), where

n denotes the sample count, effectively slowing down as more samples are drawn. To overcome this, we can apply sequence
transformation, which transforms one converging sequence into another with the goal of accelerating the rate of convergence.
However, analytically finding such a transformation for Monte Carlo estimates can be challenging, due to both the stochastic
nature of the sequence, and the complexity of the integrand. In this paper, we propose to leverage neural networks to learn
sequence transformations that improve the convergence of the progressive estimates of Monte Carlo integration. We demonstrate
the effectiveness of our method on several canonical 1D integration problems as well as applications in light transport simulation.

CCS Concepts
• Mathematics of computing → Numerical analysis; Probability and statistics; • Computing methodologies → Machine
learning algorithms; Ray tracing;

1. Introduction

Numerical integration is one of the most ubiquitous problems in
modern scientific computing. Integrals that cannot be analytically
computed are abundant in nature, and thus such integrals are often
approximated using numerical methods such as Monte Carlo inte-
gration [MU49]. Monte Carlo integration stochastically generates
a sequence of estimates that converges to the integral value. While
Monte Carlo integration is a powerful technique independent of the
dimensionality of the integrand, its convergence is typically slow,
in the order of O(

√
n), where n is the number of samples taken. In

other words, to obtain a result with half the error, four times as much
computational effort is required. Extensive research has been done
on improving the convergence of Monte Carlo estimates.

On the other hand, the mathematical branch of numerical analy-
sis provides a set of techniques known as sequence transformation
methods to improve the convergence of analytical sequences. A
sequence transformation aims to transform a convergent sequence
into another with a higher convergence rate by exploiting properties
of the initial sequence. Euler’s transformation, Aitken’s ∆

2 trans-
formation [Ait27], Levin’s u-transformation [Lev72], Brezinski’s θ

transformation [Bre71] are some of the widely used transformations
in the literature. How fast a sequence converges determines how
well a particular transformation improves its convergence. This is

† JSPS International Research Fellow

quantified by the convergence rate of the sequence. Depending on
its rate, a convergent sequence is classified into three major types:
hyperlinear, linear and sublinear. A further subclass of sublinear
convergence is logarithmic convergence.

The sequence of estimates in Monte Carlo integration is a stochas-
tic sequence that converges to the value of the integral. Our key ob-
servation is that sequence transformation techniques can potentially
improve the convergence of this sequence of estimates. A major
challenge in this formulation is to determine the type of convergence
of the sequence of Monte Carlo estimates, as well as estimating error
bounds for the transformed sequences. Although the concept of type
of convergence does not directly translate to stochastic sequences,
we can show that Monte Carlo estimates are convergent close to a
logarithmic rate (see Appendix A). This brings us to the next ma-
jor challenge: very few logarithmically convergent sequences have
been proved to achieve better convergence via analytical sequence
transformations.

To overcome these limitations of analytical transformations, we
propose a data-driven approach for sequence transformations based
on neural networks. The neural network takes as input a sequence of
Monte Carlo estimates, and generates a new sequence that converges
faster to the value of the integral. A key component of our method
is a novel loss function that optimizes a suitably weighted relative
error and leads to better convergence behavior as a result.

To demonstrate our technique, we apply the data-driven sequence

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.

https://orcid.org/0000-0003-2185-5545
https://orcid.org/0000-0001-8838-0455
https://orcid.org/0000-0002-5706-8634 
https://orcid.org/0000-0003-1251-970X
https://orcid.org/0000-0002-3149-1442


S. Mukherjee, S. Mukherjee, B-S. Hua, N. Umetani, D. Meister / Neural Sequence Transformation

transformation to two different Monte Carlo integration problems:
integration of one-dimensional Gaussian, step and products of Gaus-
sian and step functions, as well as integration of various higher
dimensional functions in light transport simulation. Our estimator
provides improved convergence of Monte Carlo integration in both
these cases, especially for lower sample counts where improved
estimates are the most beneficial.

Our main contributions can be summarized as:

• Designing a feed-forward neural network to realize data-driven
sequence transformation,
• Proposing a loss function tailored for sequence transformation of

the Monte Carlo integration process, and
• Showing an analysis formalizing the near-logarithmic conver-

gence rate of Monte Carlo integration.

2. Background and Related Work

2.1. Monte Carlo Integration

Let f : [a,b]→ R be a function that satisfies
R b

a f (x)2 dx <∞. We
aim to approximate the definite integral I =

R b
a f (x)dx, where I

is known as the reference value. Monte Carlo integration finds
an estimate of I by first drawing n samples X1, . . . ,Xn based on a
probability density function (PDF) p(x) supported on [a,b], and then
computing the following estimate:

Sn =
1
n

n

∑
i=1

f (Xi)

p(Xi)
, (1)

where Sn is an n-sample estimate of the integral. It can be shown
that E[Sn] = I, and, via the law of large numbers, Sn converges to
the integral value I as n→∞.

While Monte Carlo estimation is rather simple to implement,
there are some inherent limitations. Firstly, the quality of the es-
timate Sn depends on the choice of p(x) and the sample count n.
Moreover, the convergence rate of the estimator Sn is known to
be O(

√
n), slowing down as n becomes large. Several methods to

improve the efficiency of Monte Carlo integration have been devel-
oped, including variance reduction techniques such as importance
sampling and control variates, as well as more advanced sampling
techniques such as quasi-Monte Carlo (QMC) and Markov chain
Monte Carlo (MCMC).

2.2. Sequence Transformation

A sequence is an ordered set of real numbers. We denote a sequence
of n ∈ N elements as (sn) = {s1, . . . ,sn}. A sequence (sn) is said to
be convergent if its terms approach a real number as n grows large.
A sequence transformation T is a mapping of a sequence (sn) into
another sequence (tn) such that (tn) potentially converges faster than
(sn).

Various sequence transformation methods have been devised
based on their type of convergence. Weniger [Wen89] defines this
quantity as ρ = lim

n→∞

��� sn+1−s
sn−s

��� for any sequence (sn) that converges
to s. The type of convergence is said to be hyperlinear if ρ = 0,
linear if ρ ∈ (0,1), and sublinear if ρ = 1. Further, if ρ = 1 and

lim
n→∞

��� sn+1−sn
sn−sn�1

��� = 1, the convergence of (sn) is called logarithmic.

When ρ > 1, (sn) diverges.

Convergent sequences with hyperlinear convergence do not ben-
efit from sequence transformation [Wen89, p. 11], whereas con-
vergent sequences with logarithmic convergence are difficult to
accelerate, with examples few and far between (see [SF79, Kow81,
Sab87, Rie90, Sed90, Osa96]). Depending upon the type of conver-
gence of a sequence, different sequence transformations are used to
improve the convergence. There is a large amount of literature on
sequence transformation methods, and we refer the reader to works
by Brezinski and Redivo-Zaglia [BRZ20], Weninger [Wen89] and
Sidi [Sid03, Sid17] for details of different sequence transformation
methods in use.

In computer graphics, a very successful application of sequence
transformation can be seen in the context of geometry processing and
physics simulation [PDZ∗18], where the authors apply Anderson
acceleration [And65] for improving the convergence of fixed point
methods. However, Monte Carlo integration is difficult to formulate
as a fixed point problem since we do not know the value of the
integral beforehand. Therefore, Anderson acceleration cannot be
used directly in our scenario.

2.3. Sequence Transformation with Monte Carlo Integration

Let us consider the Monte Carlo estimates of the integral
R b

a f (x)dx
for a function f : [a,b]→ R as the sequence of random variables in
Equation 1, and we are interested in applying sequence transforma-
tion to improve its convergence. However, calculating the type of
convergence of the estimates in Equation 1 is not straightforward.
This is because Monte Carlo integration is a stochastic process, and
the concept of type of convergence has only been formulated for
analytic sequences. In Appendix A, we use expected values of the
random variables involved in the sequence to infer that the con-
vergence of Monte Carlo integration can be best approximated as
logarithmic in nature.

According to Delahaye and Germain-Bonne [DGB82], there does
not exist any universal sequence transformation method that can ac-
celerate all sequences. Specifically, there does not exist any universal
sequence transformation method that can accelerate all sequences
with logarithmic convergence. Further, only a few logarithmic se-
quences have been successfully accelerated, as mentioned in Sec-
tion 2.2. Previous work that achieves acceleration for Monte Carlo
integration, such as [O’B92, Lav94, WHKH13, JASF15, DH20] are
scenario-specific, and only few use sequence transformations.

Brezinski and Zaglia [BZ91, BZ13] propose an analytical se-
quence transformation for Monte Carlo integration, which we call
the angn transformation. It is given by:

Tn+1 = Sn− Sn+1−Sn

gn+1−gn
gn, (2)

where gn can be any function of n.

However, a variance analysis presented in Appendix A shows
that this transformation does not accelerate Monte Carlo integra-
tion. In particular, one can show that the transformed sequence has
slightly higher variance than the sequence of Monte Carlo estimates
regardless of the choice of gn.

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.



S. Mukherjee, S. Mukherjee, B-S. Hua, N. Umetani, D. Meister / Neural Sequence Transformation

4 8 16 32 64

Sample Count

10−4

10−2

100

102

MSE
Sn

Tn (Aitken’s ∆2)

Figure 1: Mean Squared Error (MSE) for the output of Aitken’s
∆

2 method when integrating a step function. Sn denotes the input
sequence of Monte Carlo estimates and Tn denotes the transformed
sequence.

As an investigation into analytical sequence transformation meth-
ods, apart from the theoretical limitations of other sequence trans-
formation methods such as Levin’s u-transformation and the angn
transformation, we implement and test Aitken’s ∆

2-method on 1D
integrands which are step functions. The results in Figure 1 show
that no acceleration is achieved. Elek et al. [ETF19] attempted to re-
duce the variance of Monte Carlo integration by learning the patterns
in the sample distribution, however, their technical report does not
provide sufficient details on the convergence and quantitative results.
These observations motivate us to consider data-driven methods to
achieve sequence transformation for Monte Carlo integration.

3. Neural Sequence Transformation

3.1. Network Architecture

Our proposed method is inspired from the concept of sequence
transformation. As there is no universal sequence transformation and
it is challenging to design one for Monte Carlo estimates, we seek
a data-driven approach by learning to transform a sequence using
a neural network. More precisely, neural sequence transformation
is a regression problem where a neural network takes convergent
sequences as input, and attempts to output a sequence that converges
faster. In order to do so, we design a fully-connected neural network
that takes in M values of an input sequence and produces a better
estimate of the converged value as output.

By viewing Monte Carlo estimates as a convergent sequence, i.e.,
(Sn) (Equation 1), we can apply a sliding window of length M to
obtain an input sequence {Si−M+1, . . . ,Si} that can be transformed
by the network to predict the improved value Ti. This results in
a transformed sequence that potentially converges faster than the
original sequence. Note that the output of the network is labelled
as Ti instead of Ti−M+1 for a fair comparison since we can only
perform this prediction after Si is computed.

Our choice of using partial sums as input to the network instead of

S1 S2 Si-2 Si-1 Si…

Ti-2 Ti-1 Ti…

…

…

…

2/4 hidden layers
256 neurons each

input sequence

output sequence

S3

T3

…

…

…

Figure 2: Illustration of our neural sequence transformation net-
work that takes an input sequence of three samples {Si−2,Si−1,Si}
as an example and outputs the transformed value Ti. The network
architecture is an ordinary fully connected MLP.

unordered samples is driven by two factors. Firstly, the formulation
of sequence transformation usually takes a convergent sequence
and transforms it into another sequence that potentially converges
faster. Secondly, in a sliding window framework with unordered
samples as input, a neural network can have access to only a few
raw samples (the window size), whereas partial sums contain richer
information about the integration process that can help accelerate
the convergence.

We model our sequence transformation as a Multi-Layered Per-
ceptron (MLP) neural network as such a network has the capability
to approximate a wide variety of functions [HSW89]. Specifically,
our network has two or four fully-connected hidden layers, each
containing 256 neurons and a leaky ReLU activation function (with
threshold 0.01). An illustrative diagram of the network is shown in
Figure 2.

3.2. Loss Function

A commonly used loss function for training neural networks is the
Mean Squared Error (MSE). Although it works very well in several
scenarios, it is not specific to our use case of Monte Carlo integration.
Instead, we propose a loss function tailored to the sequence trans-
formation of Monte Carlo estimates to potentially achieve better
performance.

In Monte Carlo integration, the convergence rate is defined as the
ratio of the logarithm of the MSE to the logarithm of the sample
counts. Ideally, this rate is −1 in the limit for Monte Carlo and −2
for quasi-Monte Carlo integration. Therefore, in a log-log plot of
the MSE vs. sample count, these graphs are ideally straight lines
with slopes −1 and −2, respectively.

The more negative the convergence rate of a transformed se-
quence, the better it performs as an estimate; additionally, the MSE
of the transformed sequence should be lower than that of the original
sequence. Without this additional constraint of having lower MSE,
the slope of the transformed sequence in the convergence graph
will be well optimized, but the output sequence might be arbitrar-
ily shifted above the original sequence, which is not desirable for
practical use. In our initial setup, we tried to fit a line through the
points in the log-log convergence graph of MSE vs. sample counts
using linear regression, where the line is defined by the slope and

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.



S. Mukherjee, S. Mukherjee, B-S. Hua, N. Umetani, D. Meister / Neural Sequence Transformation

the intercept. Nonetheless, it turned out that optimizing the slope
and intercept directly requires complex mathematical operations
(i.e, linear regression in logarithmic space) during the loss function
computation. This results in unstable and slow training. Thus, we
design a loss function that is simpler and yet works in accordance
with our goal.

The key idea is to operate directly on the error estimates (i.e.,
points in the convergence graph) to avoid performing linear regres-
sion. Due to the stochastic nature of Monte Carlo integration, the
values in a sequence are noisy estimates of the integral, which can
result in a noisy loss function during training. To improve stability,
we �rst estimate the error for the original and transformed sequences
by averaging over multiple runs of the Monte Carlo method:

ESn =
1
R

R

å
r= 1

(Sr
n � I )2; (3)

ETn =
1
R

R

å
r= 1

(Tr
n � I )2; (4)

whereR is the number of runs,I denotes the reference value for the
given integral,Tr

n andSr
n denote then-th term of ther-th run of the

output and original sequence, respectively. For the original sequence,
the errorESn is equal to the variance as these estimates are unbiased.
However, for the transformed sequence, the errorETn is mixture of
bias and variance since the neural network may introduce some bias.
For the sake of simplicity, we suppose thatk(n) = n in the following
derivations. Recall thatM denotes the size of the sliding window for
our network. We de�ne the loss function for then-th point of the
sequence as:

L n = E1=log(n)
Tn

=(ESn + e); (5)

wheree is a small positive constant to prevent division by zero. The
loss function for the whole sequence is de�ned as a sum of loss
values of the individual points:

L =
N

å
n= M

L n =
N

å
n= M

E1=log(n)
Tn

=(ESn + e): (6)

Note that this is the loss function for a single integrand. To compute
the total loss, we further take the mean of these values over all
integrands, which would require an additional index corresponding
to the integrand. For the sake of simplicity, we omit this additional
index as taking the mean is straightforward. It is also important
to realize that we need to transform the whole sequence �rst to
compute the loss function as the neural network transforms only a
partial sequence inside the sliding window (see Figure 2).

Further Analysis: The ratio of the error of the transformed and
original sequencesETn=ESn corresponds to the the signed distance
between points in the convergence graph as division translates to
difference in logarithmic space. Minimizing just this ratio would
result in shifting each point of the original sequence down below by
a constant offset in the convergence graph while preserving the same
slope as the original sequence. Therefore, in order to improve the
slope as well, we use thelogn-th root ofETn to incorporate the slope
directly into the loss function. This is more clear if we transform

Equation 5 to the logarithmic space:

logL n =
log(ETn)
log(n)

� log(ESn + e): (7)

Let us assume a linear approximationlogETn � alogn+ b in log-
log space, and note thatlog(ESn) � logV � logn for Monte Carlo
integration, whereV is the variance of a single samplef (Xi)=p(Xi)
from Equation 1. Then, we can rewrite Equation 7 into:

logL n � a+
b

log(n)
� logV + logn: (8)

For largen, it is seen that b
logn becomes negligible, andlogV is

a constant, implying an optimization problem wherea+ logn is
minimized for largen. Sincelogn contributes more to the loss
function for largen, the slopea is not as important to our network
at larger sample counts. This leads to a �attening out in thelogETn-
logn graphs in all our results. However, in practice, for largen, ESn

itself becomes small, and we need not focus on minimizing the
slopea at that point. Conversely, whenn is small, say around10, we
minimizea+ b, whence the optimizer gives more focus on the slope
a compared to when minimizinga+ logn. This leads to a sharp
drop in error at lower sample counts in cases where the interceptb
is small.

Although the behavior of our loss function is easier explained
with the help of Equation 7, we observe that using logarithms in the
loss function leads to unstable training. Thus we directly optimize
the quantityL in Equation 6 instead.

4. Results

Our method was implemented in PyTorch Lightning [Fal19] on top
of PyTorch [PGM� 19]. In our implementation, we use the Adam
optimizer [KB14] and set the learning rate to1 � 10� 4 for 1D
integrands, and3� 10� 4 for images. For generating the images in
PBRT, we turn off anti-aliasing. Unless otherwise stated, we use
the random sampler to generate our input sequences, and a sliding
window of size 8.

We remark here that equal-sample comparison was used to eval-
uate the performance of our method. At inference, our neural se-
quence transformation is applied as a post-processing step at the
end of the Monte Carlo integration. Network training is regarded
as a one-time precomputation cost, and not counted in the evalua-
tion. In light transport applications, our network takes6:5 ms per
128� 128image on an RTX2070GPU at inference (in PyTorch),
whereas rendering an image with the same resolution with32 spp
takes about300ms on a hexa-core Ryzen 5 5600X CPU (in PBRT).
Thus, the overhead of our method is small compared to rendering the
source images, which makes equal-time comparison to be similar to
equal-sample comparison.

4.1. 1D Integration

We run our method on several 1D integration problems, and com-
pare the MSE against traditional Monte Carlo integration. Motivated
by Christensen et al. [CKK18], we apply our method on three dif-
ferent classes of functions: step functions, Gaussian functions and
Gaussian functions multiplied by a step function. These families

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.



S. Mukherjee, S. Mukherjee, B-S. Hua, N. Umetani, D. Meister / Neural Sequence Transformation

Figure 3: Results of applying our method to three different classes of 1D functions: (from left to right) the Gaussian function, the step function
and the Gaussian times a step function.Sn denotes the input sequence,Tn denotes the transformed sequence when the network is trained using
only the dataset for the corresponding function, andT0

n denotes the transformed sequence when the network is trained on a dataset containing
all three functions. We observe that while the ef�cacy of our method decreases as the number of samples is increased, for lower sample counts,
the network is very good at predicting the converged value of the sequence. In general,T0

n seems to perform worse thanTn; however, it still
achieves improvement in convergence.

of discontinuous and continuous functions appear frequently in the
context of light transport simulation. The shapes of these functions
are shown in Figure 3. For 1D Gaussian functions, we train on100
runs of81 integrands. Each integrand corresponds to a pair(µ;s)
uniformly covering the square[0:1;0:3] � [0:1;0:3], where the func-

tion is of the form 1
s

p
2p

exp
�

� (x� µ)2

2s2

�
. We test on100runs of9

such new integrands corresponding to(µ0;s0), different from the
training data, by shifting them through adding a0:05 offset. The
net error of our network is computed as the average error of each
transformed sequence generated over all runs of all integrands.

We train the network for1000epochs with batch size12, and the
results are shown in Figure 3. As can be seen, there is an improve-
ment on the convergence of the transformed sequence predicted by
the network. Additionally, we found that the improvement is more
apparent at low sample count. At high sample count when the input
sequence is close to convergence, the improvement becomes more
negligible.

4.2. Ablation Study

Our loss function for then-th point of the sequence is given by

L n = E1=log(n)
Tn

=(ESn + e). It consists of a relative weighting of the
errorETn over the input errorESn. To observe the effect of chang-
ing the relative weight over the entire sequence, we compare the
performance of the following loss functions via their convergence

graphs:

L 0
n = ETn; L 1

n =
ETn

ESn + e
; L 2

n =
E1=log(n)

Tn

ESn + e
; L 3

n = E1=log(n)
Tn

(9)

Figure 4: Ablation study. We compare the performance of different
loss functions on the 1D integration of a Gaussian integrand.L 0

n
is the MSE,L 1

n is the relative MSE,L 2
n is our proposed loss, and

L 3
n is the absolute (non-relative) version of our proposed loss. The

network was trained on a dataset containing all three 1D functions
of Figure 3.

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.



S. Mukherjee, S. Mukherjee, B-S. Hua, N. Umetani, D. Meister / Neural Sequence Transformation

Figure 5: Results for a simple scenario in light transport simulation. The camera view is perpendicular to a plane lit by a rod-shaped area
light (i.e., an elongated rectangular area light source) behind the camera. We use two simple materials: diffuse Lambertian (top) and Disney
BRDF with GGX material (bottom). The �rst two sub�gures in each row depict the error maps (false color) between the input and reference
and the output and reference respectively. As can be seen, our method improves both input sequences produced by Monte Carlo (MC) and
quasi-Monte Carlo (Halton) estimation.

Observe thatL 0
n is the MSE,L 1

n is the relative MSE,L 2
n is our

proposed loss function, andL 3
n does not contain the relative factor of

the input error. We evaluate the performance of these loss functions
on the Gaussian integrand considered earlier in Figure 3. The plot in
Figure 4 suggests thatL 3

n performs worse than its relative versions.
While the choice betweenL 0

n, L 1
n andL 2

n is much more unclear, we
decided to useL 2

n as it matches our theoretical derivations.

Designing a loss function that consistently achieves faster con-
vergence is dif�cult. Via the loss function, we need to optimize
two parameters (i.e., slope and intercept of a best �t line of the
convergence graph) at once. However, loss functions which directly
optimize the slope, intercept, or linear combinations of the two do
not give reasonable results. Moreover, all loss functions that were
tested in this work perform similar to MSE. Although our proposed
loss function follows the theoretically predicted behavior in practice
and does achieve slope minimization, it is far from being perfect.
Designing better loss functions can be an interesting avenue for
future work.

4.3. Light Transport Simulation

We further demonstrate the effectiveness of our method on integra-
tion problems commonly encountered in light transport simulation.
Light transport simulation considers an integration problem over all
paths light could have travelled between a virtual camera and the
different light sources in a scene. In practice, this integral has no

closed form solution and we instead use Monte Carlo integration
to approximate it. We implement path tracing [Kaj86], a Monte
Carlo method for light transport, that, for each pixel of an image,
randomly samples light paths and averages their contribution. By
recording the progressive pixel estimates over multiple sampled
paths, we obtain a sequence of noisy estimates that can be improved
by sequence transformation. We implement our method on top of
the PBRT rendering system [PJH16].

We start with a simple scene that consists of a single plane illumi-
nated by a rod-shaped area light source outside the view of the cam-
era. The camera only sees the plane being illuminated by the light
source. We use two different materials for the plane: a Lambertian
diffuse material and a Disney BRDF with GGX material [WMLT07].
For the Lambertian material, the rendering integrand is expected to
be similar to the 1D case of the step function. For the GGX material,
the integrand is expected to be similar to the 1D case of the Gaussian
multiplied by a step function. Wang et al. [WRG� 09] use one lobe
to represent the glossy BRDF. This spherical Gaussian lobe in 3D is
a Gaussian distribution in 1D. We also represent the visibility term
using a step function. Therefore, the multiplication of the Gaussian
and step function is a good one-dimensional representation of a
typical light transport simulation use case scenario when a GGX
material is used.

For this scene, we train the network on a dataset of40 runs of
32 images of resolution128� 128. Our network takes 6 seconds
per epoch during training, and we train for1000epochs. A batch

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.



S. Mukherjee, S. Mukherjee, B-S. Hua, N. Umetani, D. Meister / Neural Sequence Transformation

Figure 6: Results for scenes in light transport: A simple monochrome scene with a plane and a diffuse teapot, lit by an area light; the same
scene but with a glossy teapot; and the cornell box scene, and with depth8 as an example of more complex light transport. The two pairs ofSn
andTn in the convergence graphs correspond to using the random and Halton samplers respectively. In all cases, we observe decreased error
at all sample counts and the behavior of the outputs match with the discussion in Section 3.2.

size of256is used, where each batch contains one integrand (in this
case, a pixel) with all its runs. We mainly consider images rendered
using the direct lighting integrator. Contrary to the 1D integration
scenario, we train a network with four hidden layers (see Figure 2).
We use different runs of the same scene for both training and testing:
40 runs for training, and a separate set of10 runs for testing are
used. The results are shown in Figure 5. As can be seen, the network
can successfully predict pixel values closer to the reference value
compared to the input sequence.

We then experiment with a scene that has more complex geom-
etry. In this case, the rendering integrand is a product of a smooth
material function and a step function due to light occlusions. The
results are shown in Figure 6. The plot in Figure 6 shows that our
method improves upon Monte Carlo integration. The qualitative re-
sults also show that our method works well across different sample
counts. However, we found that our method provides more limited

improvement on some sequences generated by quasi-Monte Carlo
integration using a Halton sampler compared to a random sampler.
We suspect that the sequence has a faster convergence and lower
error so the amount of optimization possible within our current
framework is limited.

Relevance to Monte Carlo Image Denoising. Neural sequence
transformation on light transport images can yield results effec-
tively similar to Monte Carlo sampling and reconstruction in com-
puter graphics, especially Monte Carlo image denoisers [ZJL� 15].
A typical Monte Carlo image denoiser works by exploiting spa-
tial coherence in a local window centered at a pixel to �lter noise
and predicts the pixel values in the window. Such �ltering can
be realized by multiple techniques such as reducing wavelet co-
ef�cients [ODR09], cross-bilateral �lters [LWC12, SD12], �rst-
order regression [MCY14,MIGYM15,BRM� 16], Bayesian �lter-
ing [BB17], kernel-based denoisers [CKS� 17,BVM� 17,XZW� 19],

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.


